AQA Qualifications

GCSE
 Mathematics

Unit 2 43602H
Mark scheme

43602H
June 2015

Version 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B Marks awarded independent of method.
Q
ft

SC

Mdep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.149.

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1			
$720 \div 20$ or $7.2(0) \div 0.2(0)$ or 36	M1	oe	
their $36 \div 4 \times 3$ or 27	M1	$\text { oe eg } \frac{3}{4} \times 36$ correct method to find $\frac{3}{4}$ of their 36	
their 27×5 or 135 or their 27×0.05	M1dep	$\begin{aligned} & \text { dep on } 2^{\text {nd }} \mathrm{M} 1 \\ & \text { oe } \end{aligned}$	
1.35	A1		
Alternative method 2			
$7.20 \div 4 \times 3$ or $5.4(0)$	M1	$\text { oe eg } \frac{3}{4} \times 7.20$	
their 5.4(0) $\div 20$ or 27	M1		
their 27×5 or 135 or their 27×0.05	M1dep	$\begin{aligned} & \text { dep on } 2^{\text {nd }} \mathrm{M} 1 \\ & \text { oe } \end{aligned}$	
1.35	A1		
Additional Guidance			
£135			M1M1M1A0
$£$ crossed out and 135p			M1M1M1A1
Do not allow further work to add on or subtract from their 27 for third method mark eg $36 \div 4 \times 3=27$ followed by $36+27=63$ and 63×5			M1M1M0A0
Allow rounding, truncation or exact decimal for their 27 in third method mark eg $720 \div 20=35,35 \div 4 \times 3=26.25,26 \times 5(=130)$			M1M1M1A0

Q	Answer	Mark	Comments
2	800 or 1600 or 200 or 60 or 120 or 100	M1	
	800 or 1600 and 200 and 60 or 120 or 100	M1	
	1920 or 1900 or 2000	A1	SC1 1900 without working or 1900 from 1899

3	$x=81$ and $y=19$	B2	B1 100 - (a square number) correctly evaluated or 100 - (a prime number) correctly evaluated or A list of square numbers up to and including 81 with one error or omission and a list of prime numbers up to and including 19 with one error or omission or A correctly evaluated trial of a square number plus a prime number. eg $49+53=102$	
	Additional Guidance			
	Condone $x=19$ and $y=81$			B2
	$x=9^{2}$ and $y=19$			B2
	$x=9$ and $y=19$ with $9^{2}=81$ or $9^{2}+19$ or $81+19$ in working			B2
	$x=9$ and $y=19$ without working			B1
	49 and 51 implies 100 - (a square number) correctly evaluated			B1
	91 and 9 implies 100 - (a square number) correctly evaluated			B1

Q	Answer	Mark	Comments
4	$5 x-3 x$ or $2 x$ or $-3 x+5 x$ or $-2 x$ or $7+6$ or 13 or $-6-7$ or -13	M1	
	$2 x=13$ or $-2 x=-13$	A1	
	$\frac{13}{2}$ or 6.5	A1ft	oe ft rearrangement with one error if M1 awarded
	Additional Guidance		
	Ignore further work after correct frac		

5(a)	$2(x) 100$ or $5(x) 40$	M1	oe conditional on one prime factor in a correct product equal to 200 or one prime factor shown in a correct section on a factor tree starting from 200 Any order allow on prime factor tree or repeated division using 2 or 5 correctly condone $100(x) 2(x) 1$ etc for this mark	
	$2(x) 2(x) 2(x) 5(x) 5$	A1	Any order allow on prime factor tree or repeated division	
	$2^{3} \times 5^{2}$	Q1ft	Strand (i) correct index notation Any order ft correct product of prime numbers in index form from their working	
	Additional Guidance			
	$2^{3}+5^{2}$			M1A1Q0
	$(200=) 2(\times) 2(x) 5(x) 5$ and $2^{2} \times 5^{2}$ is minimum Q1ft			
	$200 \div 2=100$			M1
	$2(x) 10(x) 10$ as a product or shown on a correct section of factor tree			M1
	$20(x) 5(x) 2$ as a product or shown on a correct section of factor tree			M1
	$20(x) 5(x) 4$ as a product or shown on a correct section of factor tree			M0

Q Answer	Mark	Comments	
5(b)	4 and 60 and 12 and 20	B2	B1 one correct or one correct and one incorrect or two correct and one incorrect Any indication

6	Alternative method 1		
	60×40 or 2400	M1	oe
	their $2400-2000$ or 400 or 2000 - their 2400	M1dep	
	$\frac{\text { their } 400}{2000}(\times 100) \text { or } 0.2$	M1dep	oe
	20(\%)	A1	
	Alternative method 2		
	60×40 or 2400	M1	oe
	their $2400-2000$ or 400 or 2000 - their 2400	M1dep	
	$10 \%=2000 \div 10 \text { or } 1 \%=2000 \div 100$ and correctly finds multiplier using build up or division to find percentage equivalent to total their 400	M1	oe Correct build up to find percentage equivalent to total their (their 2400-2000) or their (2000 - their 2400) implies M3
	20(\%)	A1	

6 (cont)	Alternative method 3			
	60×40 or 2400	M1		
	$\frac{\text { their } 2400}{2000}(\times 100) \text { or } 120(\%) \text { or } 1.2$	M1dep		
	their $120-100$ or their $1.2(0)-1(.00)$ or 100 - their 120 or $1(.00)$ - their $1.2(0)$ or 0.2	M1dep	oe	
	20(\%)	A1		
	Additional Guidance			
	20\% on answer line and no working			M1M1M1A1
	480×5 ($=2400$) from 5 years scores minimum M1			
	$60 \times 40=1800$ and 200 scores minimum M1M1			
	$60 \times 40=1800$ and 200 and $\frac{200}{2000}$			M1M1M1A0
	$60 \times 40=1800 \text { and } \frac{200}{2000}$			M1M1M1A0
	$\frac{2000}{\text { their } 2400}(=1.2)$ does not score second method mark on ALT3			

7	$\begin{aligned} & 4<n \leq 8 \\ & \text { or } 9,10,11,12,13,14,15,16 \\ & \text { or } 4.5,5,5.5,6,6.5,7,7.5,8 \\ & \text { or } 4,5,6,7,8 \\ & \text { or } 5,6,7 \\ & \text { or } 10,12,14,16 \end{aligned}$	M1	Accept $4<n$ and $n \leq 8$ List of numbers in any ord	
	5, 6, 7, 8	A1	Any order	
	Additional Guidance			
	Embedded answer fully correct $2 \times 5=10,2 \times 6=12,2 \times 7=14,2 \times 8=16$			M1A0
	4, 5, 6, 7			MOAO

9(a) $y=3 x+2 \quad$ B1

9(b)	$(P Q=) 3-0$ or 3	M1	Accept if seen on LHS of ratio (PQ) or as denominator in a gradient calculation for $P R$
	$(9,14)$ or $x=9$ or $(R S=) 9-4$ or 5	M1	
	A1		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 13(a) $x+y<7$ | B1 | |

13(b) $\quad 2 y \geq x+4$

B1

Alternative method 1		
Method to show 4 divided by 9 with answer 0.44(...) or method to show 1 divided by $9=$ $0.11(\ldots)$ and $4 \times 0.11(\ldots)$	Q1	Strand (ii) full calculation or explanation seen
Alternative method 2		
$\left(\begin{array}{lll} (x=0.44 \ldots & \text { or } & x=0 . \dot{4}) \\ 10 x=4.4 \ldots & \text { or } & 10 x=4 . \dot{4} \\ 9 x=4 & & \\ x=\frac{4}{9} & & \end{array}\right.$	Q1	Strand (ii) full calculation or explanation seen
Alternative method 3		
$\begin{aligned} & 0.44 \ldots \times 10=4.4 \ldots \\ & 0.44 \ldots \times 9=4.4 \ldots-0.44 \ldots \\ & 0.44 \ldots \times 9=4 \\ & 0.44 \ldots=\frac{4}{9} \end{aligned}$	Q1	Strand (ii) full calculation or explanation seen
Additional Guidance		
Minimum of two 4 digits seen		
$\begin{aligned} & 10 x=4.4 \\ & 9 x=4 \\ & x=\frac{4}{9} \end{aligned}$		Q1
$\begin{aligned} & x=0.4 \\ & 10 x=4.4 \\ & 9 x=4 \\ & x=\frac{4}{9} \end{aligned}$		Q0

\mathbf{Q}	Answer	Mark	Comments

14(b)	Alternative method 1		
	$\frac{9}{10}+\frac{4}{90} \text { or } \frac{81}{90}+\frac{4}{90}$ or $0.5+0 . \dot{4}$ or $\frac{1}{2}+\frac{4}{9}$ or $\frac{9}{18}+\frac{8}{18}$	M1	oe
	$\frac{85}{90}$ or $\frac{17}{18}$	A1	oe
	Alternative method 2		
	$\begin{aligned} & 10 x=9 . \dot{4} \text { and } 100 x=94 . \dot{4} \\ & \text { or } 100 x-10 x=94 . \dot{4}-9 . \dot{4} \\ & \text { or } 100 x-10 x=85 \\ & \text { or } 90 x=85 \end{aligned}$	M1	$\begin{aligned} & 100 x-x=93.5 \\ & \text { or } 99 x=93.5 \\ & \text { or }(x=) \frac{93.5}{99} \end{aligned}$
	$\frac{85}{90}$ or $\frac{17}{18}$ or $\frac{187}{198}$ or $\frac{935}{990}$	A1	oe
	Additional Guidance		
	$10 x=9.44$ and $100 x=94.4$ is minimum requirement to score M1 May be recovered by a fully correct answer to score M1A1		
	Ignore further working from correct fraction		

15(a)	63	B1	

15(b)	$5(y+1)$ or $5 y+5$ or $(4+1)(y+1)$ or $4 y+4+y+1$	
	Additional Guidance	
	Condone $(4+1) \times(y+1)$	B1
	Condone $5 \times(y+1)$ or $5 \times y+5$	B1
	Condone missing final bracket $5 \times(y+1$	B1
	Do not ignore further incorrect work	

15(d)	$(2 x+1)(y+1)$ or $2 x(y+1)+y+1$ or $y(2 x+1)+2 x+1$ or $2 x y+2 x+y+1$	B1		
	Additional Guidance			
	Condone $(2 x+1) \times(y+1)$			B1
	Condone $2 x \times(y+1)+y+1$			B1
	Do not ignore further incorrect work			

17	$a=4$ or $(3 x-1)(4 x+b)$	B1		
	$3 a x^{2}+3 b x-a x-b$ or $3 b-a=-19$ or $12 x^{2}+3 b x-4 x-b$	M1		
	$3 b x-4 x=-19 x$ or $3 b-4=-19$ or $3 b=-15$ or $b=-5$ or $(3 x-1)(4 x-5)$	M1	This mark implies B1M2	
	$a=4$ and $b=-5$ and $c=5$	A1		
	Additional Guidance			
	$3 a x^{2}+3 b x-1 a x-b$ or $3 a x^{2}+3 b x-a x-1 b$			M1
	Condone $3 x^{2} a$ and $3 x b$ and $x a$			

18(a)	$6 \sqrt{2}$	B1

\mathbf{Q}	Answer	Mark	Comments

18(b)	$\sqrt{\frac{24}{6}}$ or $\sqrt{\frac{8}{2}}$ or $\sqrt{4}$ or $\frac{\sqrt{8}}{\sqrt{2}}$ or $\frac{2 \sqrt{2}}{\sqrt{2}}$ or $\frac{\sqrt{8} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}$ or $\frac{\sqrt{16}}{2}$ or $\frac{4}{2}$ or $\frac{\sqrt{3} \times 2 \sqrt{2}}{\sqrt{6}}$ or $\frac{2 \sqrt{6}}{\sqrt{6}}$ or $\frac{\sqrt{3} \times 2 \sqrt{2} \times \sqrt{2}}{\sqrt{6} \times \sqrt{2}}$ or $\frac{2 \sqrt{12}}{\sqrt{12}}$ or $\frac{\sqrt{3} \times \sqrt{8} \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}}$ or $\frac{\sqrt{24} \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}}$ or $\frac{\sqrt{144}}{6}$ or $\frac{12}{6}$	M1		
	2	A1		
	Additional Guidance			
	$\frac{\sqrt{24}}{\sqrt{6}}$ does not score alone with	work		M0

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1		
$x^{2}-6 x-20=4-x$	M1	
$x^{2}-5 x-24(=0)$	M1	ft one error in collection of terms with all terms correctly collected on one side
$\begin{aligned} & (x-8)(x+3)(=0) \\ & \text { or }(x+a)(x+b)(=0) \end{aligned}$	M1	where $\mathrm{ab}= \pm$ their 24 or $\mathrm{a}+\mathrm{b}= \pm$ their 5 ft their quadratic or quadratic formula (allow one error)
$x=8$ and $y=-4$ or $x=-3$ and $y=7$	A1	
$x=8$ and $y=-4$ and $x=-3$ and $y=7$	A1	SC2 for both $(8,-4)$ and $(-3,7)$ by trial and improvement SC1 for either $(8,-4)$ or $(-3,7)$ by trial and improvement
Alternative method 2		
$\begin{aligned} & y=(4-y)^{2}-6(4-y)-20 \\ & \text { or } \quad y=16-8 y+y^{2}-24+6 y-20 \\ & \text { or } \quad y=y^{2}-2 y-28 \end{aligned}$	M1	allow one error in rearrangement of $y=4-x$
$y^{2}-3 y-28(=0)$	M1	ft one error in expansion and collection of terms with all terms correctly collected on one side
$\begin{aligned} & (y-7)(y+4)(=0) \\ & \text { or }(y+\mathrm{a})(y+\mathrm{b})(=0) \end{aligned}$	M1	where $\mathrm{ab}= \pm$ their 28 or $\mathrm{a}+\mathrm{b}= \pm$ their 3 ft their quadratic or quadratic formula (allow one error)
$y=-4$ and $x=8$ or $y=7$ and $x=-3$	A1	
$y=-4$ and $x=8$ and $y=7$ and $x=-3$	A1	SC2 for both $(8,-4)$ and $(-3,7)$ by trial and improvement SC1 for either $(8,-4)$ or $(-3,7)$ by trial and improvement

19 (cont)	Additional Guidance	
	Substituting $x=y-4$ into quadratic is two errors in rearrangement of $y=4-x$	M0
	Substituting $x=y-4$ into quadratic followed by collection of terms with all terms correctly collected on one side $y^{2}-15 y+20(=0)$ (allow one error)	M0M1
	Substituting $x=y-4$ into quadratic followed by $y^{2}-15 y+20(=0)$ followed by attempt to factorise quadratic where $\mathrm{ab}= \pm$ their 20 or $\mathrm{a}+\mathrm{b}= \pm$ their 15	M0M1M1

[^0]: Copyright © 2015 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

