

AQA Qualifications

GCSE Mathematics

Unit 2 43602H Mark scheme

43602H June 2015

Version 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
Q	Marks awarded for Quality of Written Communication
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
Mdep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
B dep oe	
·	has been awarded.
·	has been awarded. Or equivalent. Accept answers that are equivalent.
oe	has been awarded. Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q	Answer	Mark	Comments		
	Alternative method 1				
	720 ÷ 20 or 7.2(0) ÷ 0.2(0) or 36	M1	oe		
	their 36 ÷ 4 × 3 or 27	M1	oe eg $\frac{3}{4} \times 36$ correct method to find $\frac{3}{4}$ of the	eir 36	
	their 27 × 5 or 135 or their 27 × 0.05	M1dep	dep on 2 nd M1 oe		
	1.35	A1			
	Alternative method 2				
	7.20 ÷ 4 × 3 or 5.4(0)	M1	oe eg $\frac{3}{4} \times 7.20$		
1	their 5.4(0) ÷ 20 or 27	M1			
	their 27 × 5 or 135 or their 27 × 0.05	M1dep	dep on 2 nd M1 oe		
	1.35	A1			
	Additional Guidance				
	£135			M1M1M1A0	
	£ crossed out and 135p			M1M1M1A1	
	Do not allow further work to add on or si eg $36 \div 4 \times 3 = 27$ followed by $36 + 27$			M1M1M0A0	
	Allow rounding, truncation or exact decimal for their 27 in third method mark eg 720 \div 20 = 35, 35 \div 4 \times 3 = 26.25, 26 \times 5 (= 130)				

Q	Answer	Mark	Comments		
	800 or 1600 or 200 or 60 or 120 or 100	M1			
	800 or 1600				
	and				
	200	M1			
2	and				
	60 or 120 or 100				
	4000 - 4000 - 0000		SC1 1900 without working		
	1920 or 1900 or 2000	A1	or 1900 from 1899		
	x = 81 and $y = 19$		B1 100 – (a square number) cor evaluated	rectly	
		B2	or 100 – (a prime number) corre evaluated	ctly	
			or A list of square numbers up to including 81 with one error or or list of prime numbers up to and in with one error or omission	ission and a	
			or A correctly evaluated trial of a number plus a prime number.	a square	
3			eg 49 + 53 = 102		
3	Additional Guidance				
	Condone $x = 19$ and $y = 81$				
	$x = 9^2$ and $y = 19$				
	$x = 9$ and $y = 19$ with $9^2 = 81$ or $9^2 + 19$ or $81 + 19$ in working				
	x = 9 and $y = 19$ without working			B1	
	49 and 51 implies 100 – (a square number) correctly evaluated				
	91 and 9 implies 100 – (a square number) correctly evaluated				

Q	Answer	Mark	Comments		
	5x - 3x or $2x$ or $-3x + 5x$ or $-2xor 7 + 6 or 13 or -6 -7 or -13$	M1			
	2x = 13 or $-2x = -13$	A1			
4	$\frac{13}{2}$ or 6.5	A1ft	oe ft rearrangement with one error awarded	if M1	
	Ac	dditional G	Guidance		
	Ignore further work after correct fraction	l			
	2 (×) 100 or 5 (×) 40		oe conditional on one prime fac correct product equal to 200 or factor shown in a correct section tree starting from 200	one prime	
		M1	Any order allow on prime factor tree or rep division using 2 or 5 correctly condone 100 (×) 2 (×) 1 etc for t		
	2 (×) 2 (×) 2 (×) 5 (×) 5	A1	Any order allow on prime factor tree or repeated division		
5(a)	$2^3 \times 5^2$	Q1ft	Strand (i) correct index notation Any order ft correct product of prime numb form from their working		
	Additional Guidance				
	$2^3 + 5^2$			M1A1Q0	
	$(200 =) 2 (\times) 2 (\times) 5 (\times) 5$ and $2^2 \times 5^2$	n Q1ft			
	200 ÷ 2 = 100		M1		
	2 (×) 10 (×) 10 as a product or shown on a correct section of factor tree			M1	
	20 (×) 5 (×) 2 as a product or shown or	a correct	section of factor tree	M1	
	20 (×) 5 (×) 4 as a product or shown or	a correct	section of factor tree	MO	

Q	Answer	Mark	Comments
5(b)	4 and 60 and 12 and 20	B2	B1 one correct or one correct and one incorrect or two correct and one incorrect Any indication

	Alternative method 1				
	60 × 40 or 2400	M1	oe		
	their 2400 – 2000 or 400 or 2000 – their 2400	M1dep			
	<u>their 400</u> (× 100) or 0.2 2000	M1dep	ое		
	20(%)	A1			
6	Alternative method 2				
	60 × 40 or 2400	M1	oe		
	their 2400 – 2000 or 400 or 2000 – their 2400	M1dep			
	$10\% = 2000 \div 10$ or $1\% = 2000 \div 100$ and correctly finds multiplier using build up or division to find percentage equivalent to total their 400	M1	oe Correct build up to find percentage equivalent to total their (their 2400 – 2000) or their (2000 – their 2400) implies M3		
	20(%)	A1			

	Alternative method 3					
	60 × 40 or 2400	M1				
	<u>their 2400</u> (×100) or 120(%) or 1.2 2000	M1dep				
	their 120 – 100 or their 1.2(0) – 1(.00) or 100 – their 120 or 1(.00) – their 1.2(0) or 0.2	M1dep	ое			
	20(%)	A1				
6 (cont)	Ad					
0 (00111)	20% on answer line and no working	M1M1M1A1				
	480 × 5 (= 2400) from 5 years scores					
	60 x 40 = 1800 and 200 scores minimu					
	$60 \times 40 = 1800$ and 200 and $\frac{200}{2000}$	M1M1M1A0				
	$60 \times 40 = 1800$ and $\frac{200}{2000}$	M1M1M1A0				
	$\frac{2000}{\text{their } 2400}$ (= 1.2) does not score secon					

	4 <i>< n</i> ≤ 8		Accept 4 < n and $n \le 8$		
7	or 4, 5, 6, 7, 8 or 5, 6, 7	List of numbers in any order			
	5, 6, 7, 8	A1	Any order		
	Additional Guidance				
	Embedded answer fully correct 2 × 5 = 10, 2 × 6 = 12, 2 × 7 = 14, 2 × 8 = 16			M1A0	
	4, 5, 6, 7			M0A0	

Q	Answer	Mark	Comments	;	
	$(8^1 =) 8 \text{ or } (8^0 =) 1$	M1			
	9	A1	SC1 9 ¹		
	Additional Guidance				
0(-)	$8^1 + 1$ with answer 9^1				
8(a)	$8^1 + 0$ with answer 8^1				
	8 on answer line without working				
	$8^1 + 8^0$ with answer 8				
	$8 \times 1 = 8$ and $8 \times 0 = 0$ with answer 8				

8(b)

6⁸

B1

	$15x^7y^5$	B2		B1 two terms correct	
		Additiona	al G	Buidance	
	$8x^7y^5$				B1
8(c)	$15x^{6}y^{5}$				B1
	$15x^7 \times y^5$				B1
	$8x^7 \times y^5$ or $15x^7 \times y^6$				B1
	$15x^{12}y^6$				B0
	$15x^7 + y^5$				B0
	$8x^7 + y^5$				В0

9(a)	y = 3x + 2	B1	
	(PQ =) 3 - 0 or 3	M1	Accept if seen on LHS of ratio (PQ) or as

	(PQ =) 3 - 0 or 3	M1	denominator in a gradient calculation for PR
9(b)	(9, 14) or $x = 9$ or (RS =) $9 - 4$ or 5	M1	
	3:5	A1	

Q	Answer	Mark	Comments		
	1950 or 2049 or 1500 or 2499	M1			
	1500 and 2049		Must be seen as a linked pair		
10	or	M1			
	1950 and 2499 549	A1	SC2 550		
	$x^{2}(+) 9x(+) 5x(+) 45$ M1	Allow one error			
			Any order		
	$x^2 + 14x + 45$	A1	Any order		
	Additional Guidance				
11(a)	Terms may be seen in a multiplication grid				
	Do not ignore attempts to factorise after correct answer seen $x(x + 14) + 45$			M1A0	
	x^{2} + 14x + 40 with no working seen is one error			M1A0	
	x^2 + 10x + 45 with no working seen is t	wo errors		M0A0	
	x^2 + 5x + 45 with no working seen			M0A0	

	5x(x-2y)	B2	B1 $5(x^2 - 2xy)$ or $x(5x - 10y)$	
	Ac	ditional G	Buidance	
11(b)	Condone missing final bracket $5x(x - 2y)$			B2
	$5x \times (x - 2y)$			B1
	Condone missing final bracket $5(x^2 - 2xy)$			B1

12	(3a - b)(3a + b)		B1 $(3a - b)(3a - b)$ or $(3a + b)(3a - b)^2$ or $(3a - b)^2$ or $(3a + b)^2$ or $(9a + b)(a - b)$ or $(9a - b)(a + b)^2$	·
	Ac	ditional G	Buidance	
	$(3a-b) \times (3a+b)$			B1

Q	Answer	Mark	Comments	
13(a)	x + y < 7	B1		
13(b)	$2y \ge x+4$	B1		
	Alternative method 1			
	Method to show 4 divided by 9 with answer $0.44()$ or method to show 1 divided by 9 = 0.11() and 4 × $0.11()$	Q1	Strand (ii) full calculation or expla	anation seen
	Alternative method 2			
	(x = 0.44 or $x = 0.4)10x = 4.4$ or $10x = 4.49x = 4$	Q1	Strand (ii) full calculation or expla	anation seen
	$x = \frac{4}{9}$			
14(a)	Alternative method 3 $0.44 \times 10 = 4.4$ $0.44 \times 9 = 4.4 0.44$ $0.44 \times 9 = 4$ $0.44 = \frac{4}{9}$	Q1	Strand (ii) full calculation or expla	anation seen
		dditional (Guidance	
	Minimum of two 4 digits seen			
	10x = 4.4 9x = 4 $x = \frac{4}{9}$			Q1
				Q0
	$x = \frac{4}{9}$			

Q	Answer	Mark	Comments		
	Alternative method 1				
	$\frac{9}{10} + \frac{4}{90} \text{or} \frac{81}{90} + \frac{4}{90}$ or $0.5 + 0.4$ or $\frac{1}{2} + \frac{4}{9}$ or $\frac{9}{18} + \frac{8}{18}$	M1	oe		
	$\frac{85}{90}$ or $\frac{17}{18}$	A1	ое		
	Alternative method 2				
14(b)	10x = 9.4 and $100x = 94.4or 100x - 10x = 94.4 - 9.4or 100x - 10x = 85or 90x = 85$	M1	100x - x = 93.5 or $99x = 93.5$ or $(x =) \frac{93.5}{99}$		
	$\frac{85}{90}$ or $\frac{17}{18}$ or $\frac{187}{198}$ or $\frac{935}{990}$	A1	ое		
	Additional Guidance				
	10x = 9.44 and $100x = 94.4$ is minimum	m requirer	nent to score M1		
	May be recovered by a fully correct answ	wer to sco	re M1A1		
	Ignore further working from correct fraction				

63	B1		
5(y + 1) or $5y + 5or (4 + 1)(y + 1) or 4y + 4 + y + 1$	B1		
Ad	Iditional G	uidance	
Condone $(4 + 1) \times (y + 1)$			B1
Condone $5 \times (y + 1)$ or $5 \times y + 5$			B1
Condone missing final bracket 5 × $(y + 1)$		B1	
Do not ignore further incorrect work			
	5(y + 1) or 5y + 5 or (4 + 1)(y + 1) or 4y + 4 + y + 1 Ad Condone (4 + 1) × (y + 1) Condone 5 × (y + 1) or 5 × y + 5 Condone missing final bracket 5 × (y +	$5(y + 1)$ or $5y + 5$ B1 or $(4 + 1)(y + 1)$ or $4y + 4 + y + 1$ B1 Additional G Condone $(4 + 1) \times (y + 1)$ Condone $5 \times (y + 1)$ or $5 \times y + 5$ Condone missing final bracket $5 \times (y + 1)$	$5(y + 1)$ or $5y + 5$ B1 Additional Guidance Condone $(4 + 1) \times (y + 1)$ Condone $5 \times (y + 1)$ or $5 \times y + 5$ Condone missing final bracket $5 \times (y + 1)$

Q	Answer	Mark	Comments	
	(x + 1)(y + 1) or $x(y + 1) + y + 1$ or $y(x + 1) + x + 1$ or $xy + x + y + 1$	B1		
15(c)	5(c) Additional Guidance			
	Condone $(x + 1) \times (y + 1)$		B1	
	Condone $x \times (y + 1) + y + 1$			
	Do not ignore further incorrect wo	rk		

15(d)	(2x + 1)(y + 1) or $2x(y + 1) + y + 1$ or $y(2x + 1) + 2x + 1$ or $2xy + 2x + y + 1$	B1		
15(0)	Additional Guidance			
	Condone $(2x + 1) \times (y + 1)$			B1
	Condone $2x \times (y + 1) + y + 1$			B1
	Do not ignore further incorrect work			

Q	Answer	Mark	Comments		
	x(2y-3) or $2xy-3x$	M1	oe		
	2xy - 3x = 5y + 4	M1dep	ое		
	2xy - 5y = 3x + 4 or $y(2x - 5) = 3x + 4$ or $5y - 2xy = -3x - 4$ or $y(5 - 2x) = -3x - 4$	M1dep	$\frac{3x+4}{2x-5}$ or $\frac{-3x-4}{5-2x}$ is	M3	
16	$y = \frac{3x+4}{2x-5}$ or $y = \frac{-3x-4}{5-2x}$	A1			
	Additional Guidance				
	If there is choice mark the working lin	nked to the an	swer line		
	2xy - 3x = 5y + 4 is M1M1 as minimum				
	2xy - 5y = 3x + 4 or $y(2x - 5) = 3x + 4$ is M1M1M1 as minimum				
	Condone $x \times (2y - 3)$			M1	

	Condone $3x^2a$ and $3xb$ and xa			
	$3ax^2 + 3bx - 1ax - b$ or $3ax^2 + 3bx$	x - ax - 1b		M1
		Additional (Guidance	
	a = 4 and $b = -5$ and $c = 5$	A1		
	or $(3x - 1)(4x - 5)$			
17	or $3b = -15$ or $b = -5$			
	or $3b - 4 = -19$			
	3bx - 4x = -19x	M1	This mark implies B1M2	
	or $12x^2 + 3bx - 4x - b$			
	or $3b - a = -19$			
	$3ax^2 + 3bx - ax - b$	M1		
	a = 4 or $(3x - 1)(4x + b)$	B1		

Т

Т

18(a) 6√2

Г

Т

٦

Q	Answer	Mark	Comments	
18(b)	$\sqrt{\frac{24}{6}} \text{ or } \sqrt{\frac{8}{2}} \text{ or } \sqrt{4}$ or $\frac{\sqrt{8}}{\sqrt{2}} \text{ or } \frac{2\sqrt{2}}{\sqrt{2}}$ or $\frac{\sqrt{8} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}$ or $\frac{\sqrt{16}}{2}$ or $\frac{4}{2}$ or $\frac{\sqrt{3} \times 2\sqrt{2}}{\sqrt{6}}$ or $\frac{2\sqrt{6}}{\sqrt{6}}$ or $\frac{\sqrt{3} \times 2\sqrt{2} \times \sqrt{2}}{\sqrt{6} \times \sqrt{2}}$ or $\frac{2\sqrt{12}}{\sqrt{12}}$ or $\frac{\sqrt{3} \times \sqrt{8} \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}}$ or $\frac{\sqrt{24} \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}}$ or $\frac{\sqrt{144}}{6}$ or $\frac{12}{6}$	M1		
	2	A1		
	Ac	ditional G	Buidance	
	$\frac{\sqrt{24}}{\sqrt{6}}$ does not score alone without furth	er working		MO

Q	Answer	Mark	Comments			
	Alternative method 1					
	$x^2 - 6x - 20 = 4 - x$	M1				
	$x^2 - 5x - 24 (= 0)$	M1	ft one error in collection of terms with all terms correctly collected on one side			
	(x-8)(x+3) (= 0) or $(x+a)(x+b) (= 0)$	M1	where ab = ± their 24 or a + b = ± their 5 ft their quadratic or quadratic formula (allow one error)			
	x = 8 and $y = -4$ or $x = -3$ and $y = 7$	A1				
	x = 8 and $y = -4$ and $x = -3$ and $y = 7$	A1	SC2 for both (8, –4) and (–3, 7) by trial and improvement			
			SC1 for either $(8, -4)$ or $(-3, 7)$ by trial and improvement			
	Alternative method 2					
19	$y = (4 - y)^{2} - 6(4 - y) - 20$ or $y = 16 - 8y + y^{2} - 24 + 6y - 20$ or $y = y^{2} - 2y - 28$	M1	allow one error in rearrangement of $y = 4 - x$			
	$y^2 - 3y - 28 (= 0)$	M1	ft one error in expansion and collection of terms with all terms correctly collected on one side			
	(y-7)(y+4)(=0)	M1	where $ab = \pm$ their 28 or $a + b = \pm$ their 3			
	or $(y + a)(y + b) (= 0)$		ft their quadratic or quadratic formula (allow one error)			
	y = -4 and $x = 8$ or $y = 7$ and $x = -3$	A1				
			SC2 for both (8, –4) and (–3, 7) by trial an improvement			
	y = -4 and $x = 8$ and $y = 7$ and $x = -3$	A1	SC1 for either $(8, -4)$ or $(-3, 7)$ by trial and improvement			

	Additional Guidance	
	Substituting $x = y - 4$ into quadratic is two errors in rearrangement of $y = 4 - x$	M0
	Substituting $x = y - 4$ into quadratic followed by collection of terms with all terms correctly collected on one side $y^2 - 15y + 20$ (= 0) (allow one error)	M0M1
	Substituting $x = y - 4$ into quadratic followed by $y^2 - 15y + 20 (= 0)$	M0M1M ²
	followed by attempt to factorise quadratic where $ab = \pm their 20$ or $a + b = \pm their 15$	